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A Model-Based Meta-Analysis of 24 
Antihyperglycemic Drugs for Type 2 Diabetes: 
Comparison of Treatment Effects at 
Therapeutic Doses
Alan Maloney1, Julio Rosenstock2 and Vivian Fonseca3

Model-based meta-analysis was used to compare glycemic control, weight changes, and hypoglycemia risk across 
24 antihyperglycemic drugs used to treat type 2 diabetes. Electronic searches identified 229 randomized controlled 
studies comprising 121,914 patients. To ensure fair and unbiased treatment comparisons, the analyses adjusted for 
important differences between studies, including duration of treatment, baseline glycated hemoglobin, and drug 
dosages. At the approved doses, glycemic control was typically greatest with glucagon-like peptide 1 receptor 
agonists (GLP-1RAs), and least with dipeptidyl peptidase-4 (DPP-4) inhibitors. Weight loss was highly variable across 
GLP-1RAs but was similar across sodium-glucose cotransporter 2 (SGLT2) inhibitors. Large weight increases were 
observed with sulfonylureas and thiazolidinediones. Hypoglycemia risk was highest with sulfonylureas, although 
gliclazide was notably lower. Hypoglycemia risk for DPP-4 inhibitors, SGLT2 inhibitors, and thiazolidinediones was 
generally very low but increased slightly for both GLP-1RAs and metformin. In summary, important differences 
between and within drug classes were identified.

In 2015, the number of people aged 20–79 years with diabetes has 
been estimated at 415 million, with ~ 90% having type 2 diabetes.1 
The importance of glycemic control has been clearly shown to re-
duce the risk of microvascular complications and may contribute 
to lessen the risk of major cardiovascular events.2–5 The American 
Diabetes Association (ADA) recommends a patient-centered ap-
proach to guide the choice of antihyperglycemic drug, consider-
ing “efficacy, hypoglycemia risk, impact on weight, potential side 

effects, cost, and patient preferences”6,7 but no systematic analysis 
has compared the composite impact of these effects on all drugs 
currently available. To enable patients and physicians to make in-
formed choices between the numerous antihyperglycemic drugs 
available, our objective was to accurately compare glycemic con-
trol, weight changes, and hypoglycemia risk across 24 drugs from 6 
drug classes (dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-
like peptide 1 receptor agonists (GLP-1RAs), sodium-glucose 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Glycemic control, weight changes, and hypoglycemia risk are 
important factors in the choice of an antihyperglycemic drug in 
type 2 diabetes, but differences between studies (e.g., baseline 
glycated hemoglobin (HbA1c), duration of treatment, and drug 
dosages), along with limited head-to-head direct comparisons, 
severely limit the ability of conventional network meta-analysis 
methods to accurately compare the different antihyperglycemic 
drugs.
WHAT QUESTION DID THIS STUDY ADDRESS?
 A model-based meta-analysis (MBMA) approach was used 
to accurately compare 24 antihyperglycemic drugs from six 

drug classes in terms of glycemic control, weight changes, and 
hypoglycemia risk.
WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
 This is the first, comprehensive, MBMA across three key end-
points in type 2 diabetes. The results identified important differ-
ences between drug regimens both across and within each drug 
class; it is the drug and dose and not simply drug class that matters.
HOW MIGHT THIS CHANGE CLINICAL PHARMA­
COLOGY OR TRANSLATIONAL SCIENCE?
 This work provides a platform to facilitate the benchmark-
ing of new antihyperglycemic drugs to a wide range of approved 
antihyperglycemic drugs.
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cotransporter 2 (SGLT2) inhibitors, thiazolidinediones (TZDs), 
sulfonylureas (SUs), and the biguanide metformin). These six drug 
classes represent all therapies recommended by the ADA as either 
first-, second-, or third-line therapies6 (excluding insulin-based 
regimens).

The choice of meta-analysis method is critical to ensure fair and 
unbiased treatment comparisons, because the studies will differ (be 
heterogeneous) in many important ways. For example, changes in 
glycated hemoglobin (HbA1c) would be expected to be larger for 
a study with a higher HbA1c baseline mean (e.g., 9.0% (75 mmol/
mol)) compared with a similar study with a lower HbA1c baseline 
mean (e.g., 8.0% (64 mmol/mol)).8 Similarly, changes in HbA1c 
in a 26-week study may be expected to be larger than in a 12-
week study, so it is important to capture how the treatment effects 
change over time. Dosage, in addition to the type of drug, is a key 
driver of the treatment effect observed, and it is rational to expect 
the treatment effect for pioglitazone 30 mg to be somewhere be-
tween the effects seen at 15 and 45 mg (although not necessarily 
in the middle).

A number of extensive meta-analyses have used standard net-
work meta-analysis techniques comparing HbA1c, weight, and 
hypoglycemia risk across multiple drug classes.9,10 In these analy-
ses, however, different drugs and dose levels were pooled based on 
drug class, therefore assuming an identical treatment effect across 
all drugs and doses within a drug class. This is a major weakness 

for such meta-analyses because real differences do exist between 
doses and drugs within a given drug class, as observed in the results 
of both head-to-head studies11,12 and meta-analyses investigating 
individual drug classes.13–16 In a meta-analysis that did investigate 
treatment effects by drug and dose,17 failure to incorporate baseline 
HbA1c compromised the interpretation of certain results; a treat-
ment effect of −0.90% (9.8 mmol/mol) for pioglitazone 15 mg 
from a baseline HbA1c of 9.9% (85 mmol/mol) and a treatment 
effect of −0.70% (7.7 mmol/mol) for pioglitazone 45 mg from a 
baseline HbA1c of 7.5% (58 mmol/mol) would suggest no addi-
tional benefit in HbA1c lowering with higher pioglitazone doses, 
which is contrary to that seen in numerous dose-finding studies 
with pioglitazone.17–22 Clearly, adjusting for the influence of base-
line HbA1c on the resulting treatment effects is essential if we wish 
to ensure unbiased treatment comparisons.23

Meta-analyses that considered studies of 12 weeks duration or 
longer10 did not seem to make any adjustment for the fact that the 
full treatment effect on HbA1c or weight would not have been 
reached by week 12. The pooling of studies across regions in meta-
analyses has also been criticized.24 The above reasons may explain 
why it is common that standard network meta-analyses identify 
statistical heterogeneity between studies, thus weakening the con-
clusions that can be drawn.

Model-based meta-analysis (MBMA)25,26 is an advanced tech-
nique that has been successfully used in type 2 diabetes to model 

Figure 1  Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram for study selection (left) and a 
circular network graph overview of the data (right). The width of the lines is proportional to the number of studies comparing each pair of 
treatments, and each node shows the number of unique studies for each drug. Color is used to identify the drug class: dipeptidyl peptidase-4 
inhibitors (green), glucagon-like peptide 1 receptor agonists (blue), sodium glucose transporter-2 inhibitors (orange), sulfonylureas (purple), 
thiazolidinediones (red), and insulins (gray), along with metformin and placebo (black).
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the relationship between HbA1c and fasting plasma glucose27 to 
predict long-term efficacy28 and describe an individual drug class.29 
This technique can appropriately adjust for baseline HbA1c and 
treatment duration, and the use of dose-response models allows 
data from all doses to be included in the analysis. Using dose-
response models can also increase the precision of the estimated 
treatment effects because it uses the totality of the information 
learned from all doses. In addition to being able to incorporate all 
studies and dose levels, predictions can be made for all regimens of 
interest for an identical study design.

Our objective was to use a MBMA approach to accurately quan-
tify the similarities and differences across 24 antihyperglycemic 
drugs for 3 important end points.

RESULTS
A Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) flow diagram of the search methods, along 
with a complete list of exclusions, is shown in Figure 1a. Data 
from 229 studies were collated, representing 710 individual treat-
ment arms and 121,914 total patients. A circular network graph is 

shown in Figure 1b, and a detailed overview of the data is shown 
in Figure 2. Placebo was used in 146 studies with sitagiptin (34 
studies), metformin (29 studies), and pioglitazone (29 studies) 
being the three most studied drugs. Patients were drug-naive in 
35% (80/229) of studies, on stable background therapy (mainly 
metformin) in 59% (135/229) of studies, with the remaining 6% 
(14/229) of studies recruiting both types of patients.

Overall, study data was reported and usable for 99% (227/229 
studies (703 unique arms)), 90% (207/229 studies (637 unique 
arms)), and 87% (170/195 studies (520 unique arms)) for the 
HbA1c, weight, and hypoglycemia analyses, respectively. A total of 
34 studies were excluded from the hypoglycemia analysis because 
all patients were on background SU treatment, or some patients 
were on background SU treatment and data were not reported sep-
arately for the subset of patients not on background SU treatment.

The final models could describe the observed data, with excel-
lent agreement between the observed and predicted changes from 
baseline for HbA1c and weight, and the observed and predicted 
rate for hypoglycemia (Figures S1–S3). Individual studies were 
also well described, with individual study level predictions looking 

Figure 2  Overview of the analysis database, with completeness reported by end point as the percentage of patients in each analysis relative 
to the total patient numbers. Color is used to identify the drug class: the biguanide metformin (black), dipeptidyl peptidase-4 inhibitors (green), 
glucagon-like peptide 1 receptor agonists (blue), sodium glucose transporter-2 inhibitors (orange), sulfonylureas (purple), thiazolidinediones 
(red), and insulin-based therapies (gray). The six drugs used in the model qualification are shown without color (i.e., omarigliptin, teneligliptin, 
ITCA 650, ipragliflozin, sotagliflozin, and tofogliflozin).
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sensible and reflecting the observed data (e.g., Figure S4 shows the 
observed HbA1c data and predictions for all 34 studies with a sita-
gliptin treatment arm).

The drug effect parameters (the maximum effect (Emax) and the 
dose required to give 50% of the maximum effect (ED50)) are shown 
in Table 1 for HbA1c and weight, and examples of the estimated 
dose-response relationships are shown in Figure 3 for HbA1c (top 
panels) and weight (bottom panels) for five drugs (metformin, 
sitagliptin, liraglutide, empagliflozin, and pioglitazone). For the 
SUs, it was not possible to estimate clear dose-response relation-
ships. For these drugs, a simple fixed-effect or log-linear dose-
response model was used. No dose-response relationships could 
be determined in the hypoglycemia analysis. Individual graphs for 
all drugs in which a dose-response was estimated are provided for 
HbA1c (Figure S5) and weight (Figure S6). Figure 4 illustrates 

the estimated delay (effect of treatment duration) and scalar (effect 
of baseline) for HbA1c and weight. Of note, the drug effects scaled 
supraproportionally with baseline HbA1c, with drug effects being 
30% smaller for a baseline HbA1c of 7.5% compared with a base-
line HbA1c of 8.5%.

Figure 5 shows the estimated treatment effects vs. placebo at 
6 months for each end point at reference/approved doses. For 
HbA1c, the greatest reductions were seen with GLP-1RAs, al-
though there were considerable differences within this class, with 
the maximum reduction of 1.77% (19.3 mmol/mol) (1.67%, 
1.87%) with semaglutide 1.0 mg. The reductions in HbA1c were 
smallest with DPP-4 inhibitors, with estimated reductions rang-
ing from 0.58% (6.3 mmol/mol) with alogliptin 12.5 mg to 0.72% 
(7.9 mmol/mol) with sitagliptin 100 mg. Studies in patients on 
background therapy yielded treatment effects that were 13% (9%, 

Table 1  Estimated dose-response model parameters for HbA1c and weight

Drug

HbA1c Weight

ED50 (mg) Emax (%) ED50 (mg) Emax (kg)

Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

Metformin 1,070 (751, 1,580) −1.77 (−2.12, −1.47) 1,960 (236, 4,424) −0.9 (−1.4, −0.5)

Alogliptin 4.37 (1.95, 9.33) −0.97 (−1.20, −0.86) 761 (87, 14,892) a 4.9 (1.5, 12.5) a

Linagliptin 1.59 (0.90, 2.88) −0.97 (−1.20, −0.86) 348 (35, 67,518) a 4.9 (1.5, 12.5) a

Saxagliptin 1.56 (0.83, 2.96) −0.97 (−1.20, −0.86) 94 (15, 319) a 4.9 (1.5, 12.5) a

Sitagliptin 8.24 (2.95, 17.7) −0.97 (−1.20, −0.86) 1,221 (219, 3,450)a 4.9 (1.5, 12.5) a

Vildagliptin 13.8 (5.57, 26.4) −0.97 (−1.20, −0.86) 446 (56, 1,051) a 4.9 (1.5, 12.5) a

Albiglutide 33.2 (25.5, 64.1) −1.86 (−2.43, −1.63) 17,935 (872, 336,843) −10.0 (−39.2, −5.7)

Dulaglutide 0.27 (0.17,  0.53) −1.86 (−2.43, −1.63) 8.3 (3.6, 50.1) −10.0 (−39.2, −5.7)

Exenatide BID 9.69 (3.82, 50.8)b −1.49 (−3.03, −1.14) 99.1 (44.4, 595)b −10.0 (−39.2, −5.7)

Exenatide QW 0.75 (0.52, 1.38) −1.86 (−2.43, −1.63) 11.2 (4.8, 69.7) −10.0 (−39.2, −5.7)

Exenatide QWS 0.83 (0.32, 1.80) −1.86 (−2.43, −1.63) 58.5 (9.8, 727) −10.0 (−39.2, −5.7)

Liraglutide 0.49 (0.35, 0.91) −1.86 (−2.43, −1.63) 7.3 (3.4, 42.9) −10.0 (−39.2, −5.7)

Lixisenatide 18.3 (9.61, 91.1) b −1.49 (−3.03, −1.14) 162 (67.1, 996)b −10.0 (−39.2, −5.7)

Semaglutide 0.31 (0.21, 0.82) −2.71 (−3.90, −2.32) 1.5 (0.7, 9.1) −10.0 (−39.2, −5.7)

Canagliflozin 36.5 (16.4, 100) −1.62 (−2.10, −1.38) 38.3 (15.5, 95.6) −2.9 (−3.6, −2.4)

Dapagliflozin 1.20 (0.55, 2.34) −1.15 (−1.37, −1.02) 3.1 (1.5, 7.8) −2.9 (−3.6, −2.4)

Empagliflozin 1.66 (0.69, 3.36) −1.15 (−1.37, −1.02) 1.9 (0.6, 5.6) −2.9 (−3.6, −2.4)

Ertugliflozin 0.55 (0.09, 1.54) −1.15 (−1.37, −1.02) 2.5 (1.1, 7.0) −2.9 (−3.6, −2.4)

Pioglitazone 20.0 (11.4, 112) −1.68 (−3.22, −1.27) 23.1 (13.0, 116) 4.9 (3.6, 10.1)

Rosiglitazone 4.50 (2.70, 24.7) −1.68 (−3.22, −1.27) 5.60 (3.20, 27.7) 4.9 (3.6, 10.1)

Fixed Slope Fixed Slope

Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

Gliclazide −1.04 (−1.14, −0.95) c 2.4 (2.1, 2.8) c

Glimepiride −0.97 (−1.03, −0.91) −0.20 (−0.32, −0.09) 2.4 (2.2, 2.6) c

Glipizide −0.86 (−0.95, −0.76) −0.27 (−0.47, −0.07) 2.3 (2.0, 2.6) 0.6 (0.1, 1.0)

Glyburide −1.17 (−1.23, −1.10) −0.16 (−0.40, 0.08) 2.8 (2.5, 3.0) 0.9 (0.1, 1.6)

CI, credible interval; ED50,  the dose required to give 50% of the maximum effect; Emax, maximum effect; HbA1c, glycated hemoglobin.
aThe Emax and ED50 for the dipeptidyl peptidase-4 class should be interpreted very cautiously, as the dose levels studied were much lower than the ED50 estimated. 
The data simply support the notion that the small treatment effects observed at, say, vildagliptin 50 mg (≈0.6 kg) tended to increase with increasing dose (vildagliptin 
100 mg (≈1.0 kg)). However, extrapolation beyond these doses is highly speculative, as observed by the very wide credible interval for the Emax parameter. 
bThe ED50 for exenatide BID and lixisenatide are in microgram units.
cNot estimated.



ARTICLE

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 0 NUMBER 0 | Month 2019 5

16%) smaller than those observed in comparable studies in a 
drug-naive study population.

For body weight, consistent reductions were seen with SGLT2 
inhibitors, with estimated reductions within this class ranging 
from 1.7 kg (1.5 kg, 1.9 kg) with dapagliflozin 5 mg to 2.4 kg 

(2.2 kg, 2.6 kg) with empagliflozin 25 mg. GLP-1RAs, with the 
exception of albiglutide, also reduced body weight, ranging from 
0.4 kg (0.3 kg, 0.6 kg) with liraglutide 0.6 mg to 3.8 kg (3.4 kg, 
4.1 kg) with semaglutide 1.0 mg. Metformin resulted in a small 
weight loss (≈0.5 kg), whereas DPP-4 inhibitors typically yielded 

Figure 3  Examples of the estimated dose-response relationships (+95% credible intervals) for glycated hemoglobin (HbA1c; top panels) 
and weight (bottom panels) for five drugs (metformin, sitagliptin, liraglutide, empagliflozin, and pioglitazone). Reference/approved doses are 
shown as dashed vertical lines. These results are for a drug-naive population with a baseline HbA1c of 8.0%, a baseline weight of 90 kg, after 
26 weeks of treatment.

15 mg 45 mg10 mg 25 mg0.6 mg 1.8 mg100 mg2550 mg

Pioglitazone
15 mg 45 mg

Empagliflozin
10 mg 25 mg

Liraglutide
0.6 mg 1.8 mg

Sitagliptin
100 mg

Metformin
2550 mg

–1.5

–1.0

–0.5

0.0

H
bA

1c
 c

ha
ng

e 
vs

. p
la

ce
bo

 (%
)

–3

–2

–1

0

1

2

3

4

W
ei

gh
t c

ha
ng

e 
vs

. p
la

ce
bo

 (k
g)

0 1000 2000 3000 4000 5000

Metformin dose (mg)
0 50 100 150 200

Sitagliptin dose (mg)
0.0 0.6 1.2 1.8 2.4 3.0

Liraglutide dose (mg)
0 10 20 30 40 50

Empagliflozin dose (mg)
0 15 30 45 60 75

Pioglitazone dose (mg)
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sulfonylurea; TZD, thiazolidinedione.
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small weight increases. Larger body weight increases were observed 
with SUs and TZDs, typically in the order of 2–3 kg.

Interestingly, as background reference, the risk of documented 
hypoglycemia for placebo over 6 months was estimated at  
0.9% (0.6%, 1.3%). The relative hypoglycemia risk increase vs.  
placebo was highest with SUs, although gliclazide 3.6 (2.5, 5.1) 
was notably lower than glimepiride (8.9 (7.3, 10.9)), glyburide 
(10.2 (7.9, 13.2)), and glipizide (13.9 (10.6, 18.4)). The hypogly-
cemia risk for DPP-4 inhibitors, SGLT2 inhibitors, and TZDs was 
generally very low but increased slightly for both GLP-1RAs and 
metformin.

Finally, it is worth noting that in the HbA1c analysis, SUs were 
associated with a 23% (16%, 29%) yearly reduction in effect (from 
a nadir at week 16), although these results should be interpreted 
cautiously, as only two studies30,31 had a primary end point analysis 
longer than week 56 (both week 104).

DISCUSSION
In this comprehensive MBMA, data from 229 studies for HbA1c, 
body weight, and hypoglycemia risk were successfully used to 

accurately determine the composite treatment effects for 24 an-
tihyperglycemic drugs. To ensure fair comparisons, the extensive 
analysis appropriately adjusted for important factors, including 
the duration of treatment, baseline HbA1c, baseline weight, back-
ground treatment (drug-naive or metformin), and dose regimen.

Our results may be used by practicing physicians to make valid 
comparisons between drugs at a glance for the decision-making 
process when choosing treatment. For example, Figure 5 clearly 
demonstrates that the HbA1c lowering of semaglutide is the great-
est among all drugs and that the HbA1c lowering potential is lowest 
with pioglitazone 15 mg and DPP-4 inhibitors. On the other hand, 
the latter drugs may be selected for other clinical reasons. Similarly, 
hypoglycemia is greatest with glipizide and least with DPP-4 in-
hibitors; whereas body weight loss is most with semaglutide and 
weight gain highest with pioglitazone 45 mg. Although these facts 
may be known from individual papers, this is the first attempt to 
comprehensively evaluate and report all drugs simultaneously.

As all antihyperglycemic drugs reduce systemic glucose levels, 
they all have the potential to increase the risk of hypoglycemia. 
Clearly, the mechanism by which they reduce glucose levels is very 

Figure 5  Treatment estimates and 95% credible intervals (bars) vs. placebo for a drug-naive population with a baseline glycated hemoglobin 
(HbA1c) of 8.0%, a baseline weight of 90 kg, after 26 weeks of treatment. The absolute hypoglycemia risk (95% credible interval) for placebo 
was 0.9% (0.6−1.3%). Color is used to identify the drug class: the biguanide metformin (gray), dipeptidyl peptidase-4 inhibitors (green), 
glucagon-like peptide 1 receptor agonists (blue), sodium glucose transporter-2 inhibitors inhibitors (orange), sulfonylureas (purple), and 
thiazolidinediones (red).
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important, and we see that SUs are associated with the highest risk. 
However, the magnitude of this risk is likely to be a complex inte-
gration of pharmacological differences between the drugs (e.g., in 
pharmacokinetics and pharmacodynamics) combined with mul-
tiple physiological, biological, and behavioral (e.g., compliance, 
exercise, and diet) patient-level factors and, most importantly, the 
interpatient and intrapatient variability in all of these factors. Our 
results showed that the relative risk with gliclazide (3.6) is more 
similar to metformin (2.0) than other SUs, such as glipizide (13.9). 
Thus, although class is important, drugs within the same class may 
exhibit real and important differences in hypoglycemia risk.

The HbA1c analysis used data from 99% (227/229) of stud-
ies, with body weight (90% (207/229)) and hypoglycemia (87% 
(170/195)) only using studies in which results were reported. If the 
missingness is considered random,32,33 all results would be consid-
ered unbiased. Although it is impossible to exclude the possibility 
that the unreported studies may be different to the studies ana-
lyzed, the treatment effects in this subset of studies would need to 
be substantially different to change the treatment effects markedly.

These results are naturally reflective of the (insulin-naive) type 
2 diabetes populations recruited into the studies we considered. 
The exclusion of important patient populations (e.g., Asian stud-
ies, elderly, obese, etc.) does limit the generalizability of these re-
sults. The future inclusion of these studies, along with an accurate 
quantification of the similarities and differences between popu-
lations, would significantly strengthen the value of these results. 
Furthermore, although 6 months is sufficient time for the full 
effects on HbA1c to be reached, clearly, these results only repre-
sent the initial differences between treatments that will be used to 
manage a chronic condition, and, hence, may not fully reflect the 
durability of these effects with longer-term use. Our observation 
that glycemic control reduced over time with SUs vs. other regi-
mens is consistent with observed results seen in the ADOPT34 and 
Del Prato studies.35

The hypoglycemia analysis could clearly identify differences 
between drugs in the risk of hypoglycemia, but the data were not 
powerful enough to clearly identify dose-response relationships 
across doses within each drug (supporting the notion that within-
drug differences are much smaller than between drug differences). 
In addition, the analysis did not focus on severe hypoglycemia, 
because these events are very rare in (insulin-naive) type 2 diabe-
tes studies. Thus, whether the treatment differences determined 
would directly translate to similar differences in the risk of severe 
hypoglycemia risk is unknown. The definition of documented hy-
poglycemia was also not identical across studies, and, hence, our 
estimated risk (95% credible interval) of documented hypoglyce-
mia for placebo over 6 months of 0.9% (0.6%, 1.3%) represents a 
“typical” study (and, hence, a “typical” definition of documented 
hypoglycemia). We believe the future use and consistent reporting 
of hypoglycemia in accordance with ADA guidelines will signifi-
cantly enable an improved comparison of hypoglycemia risks for 
both current and future antihyperglycemic drugs.

The choice of antihyperglycemic drug will always depend on 
the unique patient characteristics and benefit-risk profile of each 
drug, and may incorporate recent findings in major adverse cardio-
vascular event outcome studies.36–40 However, it is hoped that our 

results will enable patients and physicians to better understand the 
similarities and differences across 24 antihyperglycemic drugs for 3 
important clinical end points.

METHODS
Data sources and searches
The PRISMA guidelines for network meta-analysis41 were used 
to collate data for the following 24 drugs: the DPP-4 inhibitors 
alogliptin, linagliptin, saxagliptin, sitagliptin, and vildagliptin, the 
GLP-1RAs albiglutide, dulaglutide, exenatide BID (Byetta), exen-
atide QW (Bydureon), exenatide QWS (Bydureon BCise), liraglutide, 
lixisenatide, and semaglutide, the SGLT2 inhibitors canaglif lozin, 
dapaglif lozin, empaglif lozin and ertuglif lozin, the SUs gliclazide, 
glipizide, glimepiride, and glyburide (glibenclamide), the TZDs piogl-
itazone and rosiglitazone, and the biguanide metformin. Additional 
drug classes (e.g., alpha glucosidase inhibitors and meglitinides) were 
not considered at this time.

The following sources of data were investigated: Medline (via PubMed), 
ClinicalTrials.gov (http://www.clinicaltrials.gov), the US Food and Drug 
Administration summary basis of approval documents and drug labels, 
and sponsor websites.

Searches were conducted simultaneously using the generic, code, and 
trade names for each drug (e.g., “exenatide OR AC 2993 OR Byetta OR 
Bydureon OR ITCA 650”). PubMed searches were restricted to “clin-
ical studies/human,” and ClinicalTrials.gov searches were restricted to 
“Intervention/phase 2–4.” Studies older than 1996 and non-English lan-
guage reports were not considered.

It is worth noting that the US Food and Drug Administration summary 
basis of approval documents provide lists of all studies that are conducted/
ongoing at the time of submission, and, hence, provided an additional 
check of the completeness of the included studies.

In addition to the phase II–IV study data from the 24 drugs of pri-
mary interest, phase II study data from 6 additional drugs (omarigliptin, 
teneligliptin, ITCA 650, ipragliflozin, sotagliflozin, and tofogliflozin) 
were included. The ability of the models to describe this additional data 
would provide a useful “internal qualification” of the generalizability of 
the dose-response models beyond the primary 24 drugs.

The models were developed using data up November 15, 2017.

Study selection
The goal was to ensure fair and unbiased treatment comparisons. Hence, 
all randomized type 2 diabetes studies were included with the following 
planned exceptions: studies run primarily in Asia, studies in special type 
2 diabetic populations (e.g., hypertensive, obese, renally impaired, high 
cardiovascular risk, elderly, and pediatric), studies with insulin back-
ground treatment, studies with SU background treatment (for hypogly-
cemia analysis only), single arm studies, combination treatment arms, 
and phase I studies.

The rationale for excluding these different patient populations was to en-
sure the final comparisons were not compromised by imbalances between 
drugs with respect to these potentially confounding factors. For example, 
as well as having different baseline characteristics (e.g., weight), Japanese pa-
tients may be expected to have, on average, higher concentrations for a given 
dose compared with patients in a typical “Western” population, and, hence, 
treatment effects can differ between populations for a given dose. The ratio-
nale for excluding studies with insulin as background treatment was again to 
avoid potential bias. This is because it is not uncommon that patients modify 
their insulin dose dependent on the efficacy of their randomized treatment, 
with more efficacious treatments resulting is less insulin use.42,43 Thus, final 
comparisons between treatments in these studies are confounded with dif-
ferential insulin usage (a similar analysis of insulin combination studies is 
being conducted separately). Similarly, for the hypoglycemia analysis, data 
were only included for studies with patients with no background SU or if 
data were presented for that proportion of patients who were not taking 

http://www.clinicaltrials.gov
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background SU. The exclusion of any study was based of the review of the 
study characteristics alone and not on any review or judgment of the results 
from that study.

Data extraction and quality assessment
To facilitate this landmark type MBMA,44 the following key data 
variables were collected for each arm/study using the study week as 

defined for the primary end point analysis: drug, dose, regimen, mean 
baseline, mean change from baseline and standard error, sample size, 
analysis method (last observation carried forward or mixed-model 
repeated-measures), week and percentage of patients by background 
therapy at baseline (e.g., drug naïve, metformin, etc.). For hypoglyce-
mia, the rate was recorded (number of patients with at least one event/
sample size), along with the end point definition. This was either as an 

Figure 6  Illustration of how model-based meta-analysis can incorporate the effect of treatment duration (top), the dose-response of each drug 
(middle), and the effect of baseline glycated hemoglobin (HbA1c) on the magnitude of the drug effect (bottom).
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“adverse event” (typically older studies) or using the ADA hypoglyce-
mia definitions45 (i.e., document, asymptomatic, probable, severe, or a 
combination thereof (if a definition of “symptomatic” was stated, this 
was recoded to “documented + probable” in the analysis)).

For SUs, treatment regimens were typically titrated (e.g., glimepiride 
titrated over 1–8 mg q.d. as needed). In this case, both the maximum dose 
and the mean dose at end point were recorded (e.g., 4.0 mg). Four addi-
tional insulin-based therapies (biphasic insulin aspart, insulin detemir, 
insulin glargine, and isophane insulin) were used as comparators in some 
studies. These were included in the analysis, although no predictions are 
presented for these regimens (see Supplementary Material S1- Insulin-
based therapies for further details).

Statistical analysis
Brief descriptions of the key features of the MBMA for HbA1c are 
shown below, including the significant advantages compared with a stan-
dard network analysis. A more technical exposition is available in the 
Statistical analysis section of Supplementary Material S1.

In a standard network meta-analysis model for HbA1c, treatment ef-
fects could be simply described as:

where “Placebo” represents the typical change from baseline for placebo 
(e.g., 0.1% (1.1 mmol/mol)) and “Drug” represents the unique effect of 
each drug (e.g., −1.0% (10.9 mmol/mol)). This approach implicitly as-
sumes the “Drug” effect is identical across all studies, and, hence, does not 
take into account key factors (e.g., study duration, drug dose, and baseline 
HbA1c) that are known to influence the magnitude of the drug effect ob-
served. MBMA can be viewed as extending the simple “Drug” effect to 
incorporate these important factors. Thus:

The three additional factors (Delay, Dose Response, and Scalar) are de-
scribed below, and illustrated in Figure 6.

Delay describes the change in drug effect as a function of study duration, 
increasing (nonlinearly) from 0% at week 0 to 100% (full effect) at week 
26. Each drug class could have its own “delay” for HbA1c, essentially re-
flecting differences in the mechanism of action between the different drug 
classes. Figure 6a shows this “delay” for two hypothetical drug classes, one 
with a faster onset of drug effect and one with a slower onset of drug effect. 
The graph shows that studies of 12-week duration for the drug class with 
the faster onset yielded 94% of the (full) drug effect observed in studies 
of 26 weeks duration, compared with 69% for the slower onset drug class.

Dose response describes the change in drug effect as a function of the 
dose (Figure 6b). The sigmoidal Emax model is a widely used dose-response 
model46 and describes the effect of drug i, class j, and dose D as:

where Emax,j is the (theoretical) maximal drug effect for class j, ED50i is the 
dose required to give 50% of the maximal response for drug i, and γj is the 
Hill coefficient for class j (i.e., the steepness of the dose-response curve). 
This approach allows all doses to be included in the modeling and unique 
predictions for each dose level to be made. Figure 6b shows the dose-
response for a hypothetic drug with an Emax of −1%, an ED50 of 20 mg, 
and a Hill coefficient of 1.

Scalar describes the change in drug effect as a function of the baseline 
HbA1c, allowing higher HbA1c baselines to have larger treatment effects, 

and lower HbA1c baselines to have smaller treatment effects (Figure 6c). 
We used the following formula to describe this:

The parameter threshold is estimated from the data and is the same for 
all drug classes. It can be considered a system property that is independent 
of drug. An estimated threshold parameter of zero would suggest that the 
drug effects scale proportionally with baseline HbA1c, whereas an esti-
mated threshold parameter of 5.2% (33 mmol/mol) would suggest that 
the drug effects are supraproportional (or, stated equally, are proportional 
to the amount the HbA1c baseline is above 5.2% (33 mmol/mol)). The 
value of Scalar is 100% for an HbA1c baseline of 8.5% (69 mmol/mol). 
Figure 6c shows how Scalar changes for three different scenarios: propor-
tional, supraproportional, and additive (i.e., where the drug effects are not 
dependent on baseline HbA1c).

The background therapy of the study population (e.g., drug-naive 
or stable background therapy) could also potentially influence the 
magnitude of the treatment effects. Therefore, the percentage change 
in the treatment effects was estimated for studies in patients on back-
ground therapy relative to a drug-naive study population (the reference 
population).

Unlike a standard network meta-analysis, the predictions for each 
study arm depend on multiple factors (e.g., study duration, drug dose, 
and baseline HbA1c), and, therefore, standard plots (e.g., forest plots) 
are not appropriate. However, checking that the model predictions are 
consistent with the observed data is an integral component of MBMA. 
This included comparing the predicted effect for each treatment arm 
with the observed estimate and 95% confidence interval. The differ-
ences between the observed change from baselines and the predicted 
change from baselines were also checked to ensure there were no sys-
tematic under- or overprediction with respect to drug class, drug, dose, 
study duration, baseline HbA1c and body weight, background therapy, 
and sample size.

Following a full Bayesian analysis, estimates for the change from pla-
cebo were determined for all regimens for a baseline HbA1c of 8.0% 
(64 mmol/mol), a baseline body weight of 90 kg, and 26 weeks of treat-
ment. For the hypoglycemia analysis (a binary response), the relative risk 
vs. placebo (i.e., predicted rate drug/prediction rate placebo) was calcu-
lated using the hypoglycemia category “documented” as the reference 
category. All drug regimens are displayed with the total daily dose, im-
plicitly assuming standard treatment regimens (e.g., the label “metformin 
2,550 mg” would be “metformin 850 mg t.i.d.”). As SU regimens were 
often titrated, results using typical drug regimen ranges were used and 
displayed.

All estimates are presented with the associated 95% credible interval 
(the interval within which there is 95% probability that the true effect is 
located). All analyses were conducted with the use of SAS software, ver-
sion 9.4 (SAS Institute Inc., Cary, NC).

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).

Figure S1. Observed (+95% CI) vs. predicted change from baseline in 
HbA1c by drug. Predictions that fall outside the observed 95% CI are 
highlighted in red. Ideally most of the 703 individual treatment arms 
should be close to the line of identity (i.e., the diagonal line, where the 
observed and predicted values are identical).
Figure S2. Observed (+95% CI) vs. predicted change from baseline in 
weight by drug. Predictions that fall outside the observed 95% CI are 
highlighted in red. Ideally most of the 637 individual treatment arms 
should be close to the line of identity (i.e., the diagonal line, where the 
observed and predicted values are identical).
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Figure S3. Observed (+95% CI) vs. predicted hypoglycemia rate by drug. 
Predictions that fall outside the observed 95% CI are highlighted in red. 
Ideally most of the 520 individual treatment arms should be close to the 
line of identity (i.e., the diagonal line, where the observed and predicted 
values are identical).
Figure S4. Change from baseline in HbA1c. Predictions (left figure in 
bold) compared to the observed results (+95% CI (right figures)) for all 
34 studies with at least one sitagliptin arm. Predictions outside the 
observed 95% CI are highlighted in red.
Figure S5. Estimated dose-response relationships for HbA1c.
Figure S6. Estimated dose-response relationships for weight.
Supplementary Material S1. Additional supporting text, figures, and 
tables.
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